

Souvenir W: The Severity Interpretation of Negative Results (SIN) for Test T+

Applying our general abbreviation: $\text{SEV}(\text{test T+}, \text{outcome } \mathbf{x}, \text{inference } H)$, we get “the severity with which $\mu \leq \mu_1$ passes test T+, with data \mathbf{x}_0 ”:

$$\text{SEV}(\text{T+}, d(\mathbf{x}_0), \mu \leq \mu_1),$$

where $\mu_1 = (\mu_0 + \gamma)$, for some $\gamma \geq 0$. If it's clear which test we're discussing, we use our abbreviation: $\text{SEV}(\mu \leq \mu_1)$. We obtain a companion to the severity interpretation of rejection (SIR), Section 4.4, Souvenir R:

SIN (Severity Interpretation for Negative Results)

- (a) If there is a very *low* probability that $d(\mathbf{x}_0)$ would have been larger than it is, even if $\mu > \mu_1$, then $\mu \leq \mu_1$ passes with *low* severity: $\text{SEV}(\mu \leq \mu_1)$ is low.
- (b) If there is a very *high* probability that $d(\mathbf{x}_0)$ would have been larger than it is, were $\mu > \mu_1$, then $\mu \leq \mu_1$ passes the test with *high* severity: $\text{SEV}(\mu \leq \mu_1)$ is high.

To break it down, in the case of a statistically insignificant result:

$$\text{SEV}(\mu \leq \mu_1) = \Pr(d(X) > d(\mathbf{x}_0); \mu \leq \mu_1 \text{ false}).$$

We look at $\{d(\mathbf{X}) > d(\mathbf{x}_0)\}$ because severity directs us to consider a “worse fit” with the claim of interest. That $\mu \leq \mu_1$ is false within our model means that $\mu > \mu_1$. Thus:

$$\text{SEV}(\mu \leq \mu_1) = \Pr(d(\mathbf{X}) > d(\mathbf{x}_0); \mu > \mu_1).$$

Now $\mu > \mu_1$ is a composite hypothesis, containing all the values in excess of μ_1 . How can we compute it? As with power calculations, we evaluate severity at a point $\mu_1 = (\mu_0 + \gamma)$, for some $\gamma \geq 0$, because for values $\mu \geq \mu_1$ the severity increases. So we need only to compute

$$\text{SEV}(\mu \leq \mu_1) > \Pr(d(\mathbf{X}) > d(\mathbf{x}_0); \mu = \mu_1).$$

To compute SEV we compute $\Pr(d(\mathbf{X}) > d(\mathbf{x}_0); \mu = \mu_1)$ for any μ_1 of interest. Swapping out the claims of interest (in significant and insignificant results), gives us a single criterion of a good test, severity.

—
—
—
—
—